
HASH TABLES – 1

DICTIONARY

 Dictionary:

 Dynamic-set data structure for storing items indexed using keys.

 Supports operations Insert, Search, and Delete.

 Applications:
 Symbol table of a compiler.

 Memory-management tables in operating systems.

 Large-scale distributed systems.

 Hash Tables:

 Effective way of implementing dictionaries.

 Generalization of ordinary arrays.

Comp 122, Fall 2003

DIRECT-ADDRESS TABLES

 Direct-address Tables are ordinary arrays.

 Facilitate direct addressing.

 Element whose key is k is obtained by indexing into the kth position

of the array.

 Applicable when we can afford to allocate an array with one

position for every possible key.

 i.e. when the universe of keys U is small.

 Dictionary operations can be implemented to take O(1) time.

 Details in Sec. 11.1.

Comp 122, Fall 2003

HASH TABLES

Notation:

 U – Universe of all possible keys.

 K – Set of keys actually stored in the dictionary.

 |K| = n.

When U is very large,

 Arrays are not practical.

 |K| << |U|.

Use a table of size proportional to |K| – The hash

tables.

 However, we lose the direct-addressing ability.

 Define functions that map keys to slots of the hash table.

HASHING
 Hash function h: Mapping from U to the slots of a hash table

T[0..m–1].

 h : U {0,1,…, m–1}

 With arrays, key k maps to slot A[k].

 With hash tables, key k maps or “hashes” to slot T[h[k]].

 h[k] is the hash value of key k.

Comp 122, Fall 2003

HASHING

Comp 122, Fall 2003

0

m–1

h(k1)

h(k4)

h(k2)=h(k5)

h(k3)

U
(universe of keys)

K

(actual

keys)

k1

k2

k3

k5

k4

collision

ISSUES WITH HASHING Multiple keys can hash to the same slot – collisions are

possible.

 Design hash functions such that collisions are minimized.

 But avoiding collisions is impossible.

 Design collision-resolution techniques.

 Search will cost Ө(n) time in the worst case.

 However, all operations can be made to have an expected

complexity of Ө(1).

Comp 122, Fall 2003

METHODS OF RESOLUTION

 Chaining:

 Store all elements that hash to the same slot in a

linked list.

 Store a pointer to the head of the linked list in the

hash table slot.

 Open Addressing:

 All elements stored in hash table itself.

 When collisions occur, use a systematic

(consistent) procedure to store elements in free

slots of the table.

Comp 122, Fall 2003

k2

0

m–1

k1 k4

k5 k6

k7 k3

k8

COLLISION RESOLUTION BY CHAINING

Comp 122, Fall 2003

0

m–1

h(k1)=h(k4)

h(k2)=h(k5)=h(k6)

h(k3)=h(k7)

U
(universe of keys)

K

(actual

keys)

k1

k2

k3

k5

k4

k6

k7 k8

h(k8)

X

X

X

COLLISION RESOLUTION BY CHAINING

Comp 122, Fall 2003

k2

0

m–1

U
(universe of keys)

K

(actual

keys)

k1

k2

k3

k5

k4

k6

k7 k8

k1 k4

k5 k6

k7 k3

k8

HASHING WITH CHAINING

Dictionary Operations:

Chained-Hash-Insert (T, x)

 Insert x at the head of list T[h(key[x])].

 Worst-case complexity – O(1).

Chained-Hash-Delete (T, x)

 Delete x from the list T[h(key[x])].

 Worst-case complexity – proportional to length of list with

singly-linked lists. O(1) with doubly-linked lists.

Chained-Hash-Search (T, k)

 Search an element with key k in list T[h(k)].

 Worst-case complexity – proportional to length of list.

Comp 122, Fall 2003

ANALYSIS ON CHAINED-HASH-SEARCH

Load factor =n/m = average keys per slot.
 m – number of slots.

 n – number of elements stored in the hash table.

Worst-case complexity: (n) + time to compute h(k).

 Average depends on how h distributes keys among m slots.

Assume
 Simple uniform hashing.

 Any key is equally likely to hash into any of the m slots, independent of
where any other key hashes to.

 O(1) time to compute h(k).

Time to search for an element with key k is
(|T[h(k)]|).

Expected length of a linked list = load factor = =
n/m.

Comp 122, Fall 2003

EXPECTED COST OF AN UNSUCCESSFUL

SEARCH

Proof:

Any key not already in the table is equally likely to

hash to any of the m slots.

To search unsuccessfully for any key k, need to

search to the end of the list T[h(k)], whose expected

length is α.

Adding the time to compute the hash function, the

total time required is Θ(1+α).

Comp 122, Fall 2003

Theorem:

An unsuccessful search takes expected time Θ(1+α).

EXPECTED COST OF A SUCCESSFUL SEARCH

Proof:

 The probability that a list is searched is proportional to the
number of elements it contains.

 Assume that the element being searched for is equally likely
to be any of the n elements in the table.

 The number of elements examined during a successful
search for an element x is 1 more than the number of
elements that appear before x in x’s list.
 These are the elements inserted after x was inserted.

 Goal:
 Find the average, over the n elements x in the table, of how many

elements were inserted into x’s list after x was inserted.

Comp 122, Fall 2003

Theorem:

A successful search takes expected time Θ(1+α).

EXPECTED COST OF A SUCCESSFUL SEARCH

Proof (contd):

 Let xi be the ith element inserted into the table, and let ki =

key[xi].

 Define indicator random variables Xij = I{h(ki) = h(kj)}, for all i,

j.

 Simple uniform hashing Pr{h(ki) = h(kj)} = 1/m

 E[Xij] = 1/m.

 Expected number of elements examined in a successful

search is:

n

i

n

ij

ijX
n

E
1 1

1
1

Comp 122, Fall 2003

Theorem:

A successful search takes expected time Θ(1+α).

No. of elements inserted after xi into the same slot as xi.

PROOF – CONTD.

n

m

n

nn
n

nm

in
nm

in
nm

mn

XE
n

X
n

E

n

i

n

i

n

i

n

i

n

ij

n

i

n

ij

ij

n

i

n

ij

ij

22
1

2

1
1

2

)1(1
1

1
1

)(
1

1

1
1

1

][1
1

1
1

2

1 1

1

1 1

1 1

1 1

Comp 122, Fall 2003

(linearity of expectation)

Expected total time for a successful search

= Time to compute hash function + Time

to search

= O(2+/2 – /2n) = O(1+).

EXPECTED COST – INTERPRETATION

 If n = O(m), then =n/m = O(m)/m = O(1).

 Searching takes constant time on average.

 Insertion is O(1) in the worst case.

Deletion takes O(1) worst-case time when lists are

doubly linked.

Hence, all dictionary operations take O(1) time on

average with hash tables with chaining.

GOOD HASH FUNCTIONS
 Satisfy the assumption of simple uniform hashing.

 Not possible to satisfy the assumption in practice.

 Often use heuristics, based on the domain of the keys, to create a hash
function that performs well.

 Regularity in key distribution should not affect uniformity. Hash value
should be independent of any patterns that might exist in the data.

 E.g. Each key is drawn independently from U according to a
probability distribution P:

k:h(k) = j P(k) = 1/m for j = 0, 1, … , m–1.

 An example is the division method.

Comp 122, Fall 2003

KEYS AS NATURAL NUMBERS

 Hash functions assume that the keys are natural numbers.

 When they are not, have to interpret them as natural
numbers.

 Example: Interpret a character string as an integer expressed
in some radix notation. Suppose the string is CLRS:

 ASCII values: C=67, L=76, R=82, S=83.

 There are 128 basic ASCII values.

 So, CLRS = 67·1283+76 ·1282+ 82·1281+ 83·1280
= 141,764,947.

DIVISION METHOD

 Map a key k into one of the m slots by taking the remainder
of k divided by m. That is,

 h(k) = k mod m

 Example: m = 31 and k = 78 h(k) = 16.

 Advantage: Fast, since requires just one division
operation.

 Disadvantage: Have to avoid certain values of m.
 Don’t pick certain values, such as m=2

p

 Or hash won’t depend on all bits of k.

 Good choice for m:
 Primes, not too close to power of 2 (or 10) are good.

MULTIPLICATION METHOD

 If 0 < A < 1, h(k) = m (kA mod 1) = m (kA – kA)

 where kA mod 1 means the fractional part of kA, i.e., kA – kA.

 Disadvantage: Slower than the division method.

 Advantage: Value of m is not critical.

 Typically chosen as a power of 2, i.e., m = 2
p
, which makes

implementation easy.

 Example: m = 1000, k = 123, A 0.6180339887…

h(k) = 1000(123 · 0.6180339887 mod 1)

 = 1000 · 0.018169... = 18.

MULTIPLICATION MTHD. – IMPLEMENTATION
Choose m = 2p, for some integer p.

Let the word size of the machine be w bits.

Assume that k fits into a single word. (k takes w bits.)

Let 0 < s < 2w. (s takes w bits.)

Restrict A to be of the form s/2w.

Let k s = r1 ·2
w+ r0 .

 r1 holds the integer part of kA (kA) and r0 holds the fractional

part of kA (kA mod 1 = kA – kA).

 We don’t care about the integer part of kA.

 So, just use r0, and forget about r1.

Comp 122, Fall 2003

MULTIPLICATION MTHD – IMPLEMENTATION

 We want m (kA mod 1). We could get that by shifting r0 to

the left by p = lg m bits and then taking the p bits that were

shifted to the left of the binary point.

 But, we don’t need to shift. Just take the p most significant

bits of r0.

Comp 122, Fall 2003

k

s = A·2w

r0 r1

w bits

h(k)

extract p bits

·

binary point

HOW TO CHOOSE A?

 Another example: On board.

 How to choose A?

 The multiplication method works with any legal value of A.

 But it works better with some values than with others, depending

on the keys being hashed.

 Knuth suggests using A (5 – 1)/2.

Comp 122, Fall 2003

