Hash Tables - 1

DICTIONARY

- Dictionary:
- Dynamic-set data structure for storing items indexed using keys.
- Supports operations Insert, Search, and Delete.
- Applications:
- Symbol table of a compiler.
- Memory-management tables in operating systems.
- Large-scale distributed systems.
- Hash Tables:
- Effective way of implementing dictionaries.
- Generalization of ordinary arrays.

Direct-address Tables

- Direct-address Tables are ordinary arrays.
- Facilitate direct addressing.
- Element whose key is k is obtained by indexing into the $k^{\text {th }}$ position of the array.
- Applicable when we can afford to allocate an array with one position for every possible key.
- i.e. when the universe of keys U is small.
- Dictionary operations can be implemented to take $O(1)$ time.
- Details in Sec. 11.1.

Hash Tables

- Notation:
- U - Universe of all possible keys.
- K-Set of keys actually stored in the dictionary.
- $|K|=n$.
- When U is very large,
- Arrays are not practical.
- $|K| \ll|U|$.
- Use a table of size proportional to $|K|$ - The hash tables.
- However, we lose the direct-addressing ability.
- Define functions that map keys to slots of the hash table.

HASHING

- Hash function h : Mapping from U to the slots of a hash table 70..m-1].

$$
h: U \rightarrow\{0,1, \ldots, m-1\}
$$

- With arrays, key k maps to slot $A[k]$.
- With hash tables, key k maps or "hashes" to slot $T[h[k]]$.
- $h[k]$ is the hash value of key k.

HAshing

- Nauttiptekekyld cahhasthlibGhe same slot - collisions are possible.
- Design hash functions such that collisions are minimized.
- But avoiding collisions is impossible.
- Design collision-resolution techniques.
- Search will cost $\Theta(n)$ time in the worst case.
- However, all operations can be made to have an expected complexity of $\Theta(1)$.

Methods of Resolution

- Chaining:
- Store all elements that hash to the same slot in a linked list.
- Store a pointer to the head of the linked list in the hash table slot.
- Open Addressing:
- All elements stored in hash table itself.
- When collisions occur, use a systematic (consistent) procedure to store elements in free slots of the table.

Collision Resolution by Chaining

Collision Resolution by Chaining

Hashing with Chaining

Dictionary Operations:

- Chained-Hash-Insert (T, x)
- Insert x at the head of list $T h(k e y[x])]$.
- Worst-case complexity - O(1).
- Chained-Hash-Delete (T, x)
- Delete x from the list $\Pi h(\operatorname{key}[x])]$.
- Worst-case complexity - proportional to length of list with singly-linked lists. $O(1)$ with doubly-linked lists.
- Chained-Hash-Search (T, k)
- Search an element with key k in list $T h(k)]$.
- Worst-case complexity - proportional to length of list.

Analysis on Chained-Hash-SEARCH

- Load factor $\alpha=n / m=$ average keys per slot.
- m - number of slots.
- n - number of elements stored in the hash table.
- Worst-case complexity: $\Theta(n)+$ time to compute $h(k)$.
- Average depends on how h distributes keys among m slots.
- Assume
- Simple uniform hashing.
- Any key is equally likely to hash into any of the m slots, independent of where any other key hashes to.
- O(1) time to compute $h(k)$.
- Time to search for an element with key k is $\Theta(\mid T h(k)] \mid)$.
- Expected length of a linked list = load factor $=\alpha=$ n / m.

SEARCH

Theorem:

An unsuccessful search takes expected time $\Theta(1+\alpha)$.

Proof:

- Any key not already in the table is equally likely to hash to any of the m slots.
- To search unsuccessfully for any key k, need to search to the end of the list $\Pi h(k)]$, whose expected length is α.
- Adding the time to compute the hash function, the total time required is $\Theta(1+\alpha)$.

Expected Cost of a Successful Search

Theorem:

A successful search takes expected time $\Theta(1+\alpha)$.

Proof:

- The probability that a list is searched is proportional to the number of elements it contains.
- Assume that the element being searched for is equally likely to be any of the n elements in the table.
- The number of elements examined during a successful search for an element x is 1 more than the number of elements that appear before x in x 's list.
- These are the elements inserted after x was inserted.
- Goal:
- Find the average, over the n elements x in the table, of how many elements were inserted into x's list after x was inserted.

Expected Cost of a Successful Search

Theorem:

A successful search takes expected time $\Theta(1+\alpha)$.

Proof (contd):

- Let x_{i} be the $i^{\text {th }}$ element inserted into the table, and let $k_{\mathrm{i}}=$ key $\left[x_{i}\right]$.
- Define indicator random variables $X_{\mathrm{ij}}=\left\{\left\{h\left(k_{\mathrm{i}}\right)=h\left(k_{\mathrm{j}}\right)\right\}\right.$, for all i, j.
\circ Simple uniform hashing $\Rightarrow \operatorname{Pr}\left\{h\left(k_{i}\right)=h\left(k_{\mathrm{j}}\right)\right\}=1 / m$

No. of elements inserted after x_{i} into the same slot as x_{i}.

Proof - Contd.

$$
\begin{aligned}
& E\left[\frac{1}{n} \sum_{i=1}^{n}\left(1+\sum_{j=i+1}^{n} X_{i j}\right)\right] \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(1+\sum_{j=i+1}^{n} E\left[X_{i j}\right]\right) \\
& =\frac{1}{n} \sum_{i=1}^{n}\left(1+\sum_{j=i+1}^{n} \frac{1}{m}\right) \\
& =1+\frac{1}{n m} \sum_{i=1}^{n}(n-i) \\
& =1+\frac{1}{n m}\left(\sum_{i=1}^{n} n-\sum_{i=1}^{n} i\right) \\
& =1+\frac{1}{n m}\left(n^{2}-\frac{n(n+1)}{2}\right) \\
& =1+\frac{n-1}{2 m} \\
& =1+\frac{\alpha}{2}-\frac{\alpha}{2 n}
\end{aligned}
$$

Expected total time for a successful search
$=$ Time to compute hash function + Time to search
$=O(2+\alpha / 2-\alpha / 2 n)=O(1+\alpha)$.

Expected Cost - Interpretation

- If $n=O(m)$, then $\alpha=n / m=O(m) / m=O(1)$. \Rightarrow Searching takes constant time on average.
- Insertion is $O(1)$ in the worst case.
- Deletion takes $O(1)$ worst-case time when lists are doubly linked.
- Hence, all dictionary operations take $O(1)$ time on average with hash tables with chaining.

Good Hash Functions

- Satisfy the assumption of simple uniform hashing.
- Not possible to satisfy the assumption in practice.
- Often use heuristics, based on the domain of the keys, to create a hash function that performs well.
- Regularity in key distribution should not affect uniformity. Hash value should be independent of any patterns that might exist in the data.
- E.g. Each key is drawn independently from U according to a probability distribution P :

$$
\sum_{k: h(k)=j} P(k)=1 / m \quad \text { for } j=0,1, \ldots, m-1 .
$$

- An example is the division method.

Keys as Natural Numbers

- Hash functions assume that the keys are natural numbers.
- When they are not, have to interpret them as natural numbers.
- Example: Interpret a character string as an integer expressed in some radix notation. Suppose the string is CLRS:
- ASCII values: $\mathrm{C}=67, \mathrm{~L}=76, \mathrm{R}=82, \mathrm{~S}=83$.
- There are 128 basic ASCII values.
- So, CLRS $=67 \cdot 128^{3}+76 \cdot 128^{2}+82 \cdot 128^{1}+83 \cdot 128^{0}$
$=141,764,947$.

DIVISION METHOD

- Map a key k into one of the m slots by taking the remainder of k divided by m. That is,

$$
h(k)=k \bmod m
$$

- Example: $m=31$ and $k=78 \Rightarrow h(k)=16$.
- Advantage: Fast, since requires just one division operation.
- Disadvantage: Have to avoid certain values of m.
- Don't pick certain values, such as $m=2^{0}$
- Or hash won't depend on all bits of k.
- Good choice for m :
- Primes, not too close to power of 2 (or 10) are good.

Multiplication Method

- If $0<A<1, h(k)=\lfloor m(k A \bmod 1)\rfloor=\lfloor m(k A-\lfloor k A\rfloor)\rfloor$
where $k A$ mod 1 means the fractional part of $k A$, i.e., $k A-\lfloor k A\rfloor$.
- Disadvantage: Slower than the division method.
- Advantage: Value of m is not critical.
- Typically chosen as a power of 2, i.e., $m=2^{0}$, which makes implementation easy.
- Example: $m=1000, k=123, A \approx 0.6180339887 \ldots$ $h(k)=\lfloor 1000(123 \cdot 0.6180339887 \bmod 1)\rfloor$ $=\lfloor 1000 \cdot 0.018169 \ldots\rfloor=18$.

Multiplication Mthd. - Implementation

- Choose $m=2^{p}$, for some integer p.
- Let the word size of the machine be w bits.
- Assume that k fits into a single word. (k takes w bits.)
- Let $0<s<2^{w}$. (s takes w bits.)
- Restrict A to be of the form $s / 2^{w}$.
- Let $k \times S=r_{1} \cdot 2^{w}+r_{0}$.
- r_{1} holds the integer part of $k A(\lfloor k A\rfloor)$ and r_{0} holds the fractional part of $k A(k A \bmod 1=k A-\lfloor k A\rfloor)$.
- We don't care about the integer part of $k A$.
- So, just use r_{0}, and forget about r_{1}.

MuLTIPLICATION MTHD - IMP ${ }^{w}$ bits MENTATION

- We want $\lfloor m(k A \bmod 1)\rfloor$. We could get that by shifting r_{0} to the left by $p=\lg m$ bits and then taking the p bits that were shifted to the left of the binary point.
- But, we don't need to shift. Just take the p most significant bits of r_{0}.

How to choose A?

- Another example: On board.
- How to choose A?
- The multiplication method works with any legal value of A.
- But it works better with some values than with others, depending on the keys being hashed.
- Knuth suggests using $A \approx(\sqrt{ } 5-1) / 2$.

